Пользовательского поиска


предыдущая главасодержаниеследующая глава

Атмосфера и фиолетовый слой

В то же великое противостояние 1909 г., когда Антониади наблюдал Марс в 83-сантиметровый рефрактор Медонской обсерватории, в другом месте земного шара были впервые получены снимки Марса со светофильтрами. Этим местом была Пулковская обсерватория, где на 76-сантиметровом рефракторе фотографировал Марс тогда еще молодой русский ученый Гавриил Адрианович Тихов.

Г. А. Тихову удалось получить большую серию снимков Марса с различными светофильтрами от красного до зеленого. Их обработка позволила обнаружить три явления, получившие название "эффектов Тихова".

1. "Моря" Марса кажутся особенно темными в красный светофильтр и сравнительно слабее выделяются на фоне материков в зеленый светофильтр. Иначе говоря, контраст между "морями" и материками увеличивается с переходом от зеленых лучей к красным.

2. Полярные шапки резче всего выделяются на фоне материков в зеленых лучах и значительно слабее в красных.

3. Резкость деталей на диске планеты постепенно снижается к краю диска; это явление особенно заметно на снимках, сделанных в зеленых лучах, и гораздо слабее в красных.

Первый эффект указывал на то, что материки имеют красноватый цвет, а "моря" скорее зеленоватый. Второй эффект был истолкован так: полярные шапки не белые, как свежий снег, а голубоватые и больше напоминают по цвету речной лед. Наконец, третий эффект, по мнению Г. А. Тихова и многих других ученых, свидетельствовал о наличии у Марса атмосферы. Лишь спустя 60 лет выяснилось, что атмосфера Марса вносит более чем скромный вклад в "третий эффект" - главная его причина была иная. Позднейшие исследования внесли существенные поправки и в истолкование первых двух эффектов Тихова.

Действительно, атмосфера планеты, независимо от своего состава, должна рассеивать солнечные лучи по закону Рэлея, - так, что интенсивность рассеянного света изменяется обратно пропорционально четвертой степени длины волны. Поэтому зеленые лучи должны рассеиваться атмосферой сильнее, чем красные, и детали поверхности будут замываться рассеянным светом атмосферы. Еще сильнее должны рассеиваться синие и фиолетовые лучи, и в еще большей степени ультрафиолетовые. Астрономы попытались проверить это во время следующего великого противостояния 1924 г., когда американский астроном Вильям Райт получил с помощью 91-сантиметрового рефлектора Ликской обсерватории серию снимков Марса во всех лучах спектра от инфракрасных до ультрафиолетовых. Вскоре такую же серию снимков получил на 158-сантиметровом рефлекторе обсерватории Маунт Вилсон другой американский астроном - Фрэнк Росс.

Снимки Райта и Росса не только подтверждали результаты Тихова, но и позволили обнаружить два новых эффекта. Во-первых, в синих, фиолетовых и ультрафиолетовых лучах никакие детали поверхности не просматривались: были видны только полярные шапки (рис. 7). Во-вторых, диаметр диска Марса в фиолетовых лучах был заметно больше, чем в красных. Это явление получило название эффекта Райта.

Рис. 7. Марс в синих (слева) и красных (справа) лучах (по Райту)
Рис. 7. Марс в синих (слева) и красных (справа) лучах (по Райту)

Открытие эффекта Райта не носило столь сенсационного характера, как открытие марсианских каналов за полстолетия до того. Широкая публика даже не заметила его. Но в кругах ученых это открытие вызвало не менее горячие споры, чем вопрос о каналах, причем их отголоски дошли и до наших дней.

Разность диаметров диска Марса в ультрафиолетовых и инфракрасных лучах на снимках Райта и Росса достигала 200-300 км. Если это результат рассеяния солнечных лучей в плотной атмосфере Марса, то ее высота должна быть равна половине этой величины, т. е. 100-150 км. Отсюда Райт сделал вывод, что Марс окружен весьма плотной и протяженной атмосферой.

Но непосредственные наблюдения и снимки Марса в общем свете, а также в красных, оранжевых, желтых лучах показывали, что его атмосфера весьма прозрачна. Получалось противоречие. Если бы Марс обладал очень плотной атмосферой, она казалась бы нам молочно-белой, как атмосфера Венеры.

Некоторые ученые пытались объяснить эффект Райта фотографической иррадиацией, т. е. рассеянием света в светочувствительном слое фотоэмульсии, которое тоже зависит от длины волны. Но в 1926 г. Райт вновь получил те же результаты, а Росс сфотографировал наряду с Марсом планеты Юпитер и Венеру, а также искусственные модели планет, и показал, что для этих планет и моделей эффект Райта не имеет места.

Однако теоретическое исследование процесса рассеяния света в атмосфере планеты, выполненное в 1926 г. советским астрономом В. Г. Фесенковым, показало, что при любых предположениях о строении атмосферы Марса разность видимых радиусов планеты в фиолетовых и красных лучах не может превысить 35 км, но никак не 100 или 150 км.

Тогда Райт предложил новое объяснение своему эффекту. Атмосфера Марса может быть очень разреженной и прозрачной, но на некоторой высоте (скажем, 100 км) в ней может находиться слой каких-то частиц в виде мглы или дымки, который и рассеивает фиолетовые лучи. Он получил название фиолетового слоя или голубой дымки.

Советские астрономы-фотометристы Н. П. Барабашов и В. В. Шаронов уже в 1950 г. дали совсем иное объяснение эффекта Райта. Дело было все-таки в фотографической иррадиации, но в сочетании с законом падения яркости к краю диска Марса. В красных лучах яркость падает к краям диска довольно сильно, поскольку мы наблюдаем здесь шарообразную поверхность планеты. Наоборот, в фиолетовых лучах, как мы уже знаем, диск Марса кажется освещенным более равномерно, и его края довольно ярки. Поэтому в фиолетовых лучах иррадиация будет сильнее, чем в красных, что и вызовет эффект Райта.

Юпитер и Венера обладают мощными протяженными атмосферами, и даже в красных лучах мы не можем наблюдать их поверхности. Поэтому закон падения яркости к краю диска у них иной, чем у Марса, и эффект Райта для них наблюдаться не может. Объяснение эффекта Райта Н. П. Барабашовым и В. В. Шароновым было совершенно правильно, за одним исключением. Распределение яркости по диску Марса в фиолетовых лучах они приписывали целиком рассеянию света в атмосфере Марса. В действительности же главную роль здесь играли фотометрические свойства поверхности планеты.

Методы фотографической фотометрии, развитые советскими астрономами В. Г. Фесенковым, Н. П. Барабашовым, Н. Н. Сытинской, позволяли по распределению яркости вдоль диаметра диска планеты в разных лучах спектра определять одновременно отражательные свойства ее поверхности и оптические характеристики атмосферы. Одна из них, а именно оптическая толщина, позволяла подсчитать давление атмосферы. Такие определения советские астрономы производили начиная с 30-х годов. Присоединив к ним наблюдения поляризации света, рассеянного атмосферой Марса, выполненные французскими астрономами Б. Лио и О. Дольфюсом, а также собственные наблюдения по методу визуальной фотометрии, американский астроном Ж. де Вокулер опубликовал в 1951 г. сводку всех определений давления атмосферы Марса. В среднем из многих определений получалось, что давление у поверхности Марса равно 85 миллибар (1 миллибар = 0,001 атмосферы), т. е. в 12 раз меньше, чем на Земле, и соответствует давлению на уровне 18 км.

Увы, это значение оказалось завышенным почти в 15 раз. Ученых подвели аэрозоли - частицы пыли, постоянно присутствующие в атмосфере Марса и рассеивающие солнечный свет наряду с газовыми молекулами. Их вклад в рассеяние был ошибочно приписан газовой атмосфере и плотность ее была переоценена. Сказались и некоторые произвольные предположения о фотометрических свойствах поверхности Марса. Но выяснить все это удалось гораздо позже и совсем другими методами. Мы расскажем об этом немного дальше.

В монографии "Физика планеты Марс", изданной в 1951 г., Вокулер, оценивая критику гипотезы фиолетового слоя В. В. Шароновым и другими советскими астрономами, сделал вывод, что "их соображения не могут быть приняты, так как наблюдаемые весьма значительные прояснения в атмосфере Марса непосредственно доказывают существование такого слоя".

Да, такие прояснения наблюдались с 1937 г., когда Э. Слайфер впервые обратил на это внимание. Иногда вдруг на снимках Марса в синих и фиолетовых лучах проступала картина деталей поверхности планеты, доступная наблюдениям обычно в красных лучах. Факты таких прояснений никто и не пытался подвергнуть сомнению.

Основное разногласие состояло в другом. Советские фотометристы считали, что в атмосфере Марса, кроме газа, могут быть и крупные частицы (аэрозоли), рассеивающие свет не по закону Рэлея. Они-то и создавали все эффекты, приписываемые фиолетовому слою, в том числе и прояснения. Если называть прослойки, содержащие такие аэрозоли, фиолетовым слоем, писал В. В. Шаронов, отвечая Вокулеру, то разногласий с его позицией не будет.

Но Вокулер наряду с другими авторами приписывал фиолетовому слою способность не только рассеивать, но и поглощать солнечный свет. Он так и назвал его: поглощающий высотный слой. Это, отмечал Шаронов, противоречило как фотометрическим наблюдениям, выполненным в СССР, так и многим другим фактам.

Приведем некоторые из них. Если частицы фиолетового слоя достаточно крупные, то они будут рассеивать не только сине-фиолетовые, но и лучи других цветов, что, однако, не наблюдается. Если же этот слой обладает сильным поглощением фиолетовых лучей, то он не сможет создать яркую дымку рассеянного света, а его сгущения выступали бы на диске Марса в виде темных пятен, а не светлых облаков, которые наблюдаются в действительности, особенно вблизи терминатора (границы дня и ночи на Марсе).

Неясно было и из чего могут состоять частицы фиолетового слоя. Чехословацкий астроном Ф. Линк полагал, что это метеорные частицы, американец С. Гесс, - что это кристаллы углекислоты (СО2), его соотечественник Дж. Койпер считал их кристаллами льда, француз Э. Шацман - капельками воды. Однако гипотеза Линка не объясняла быстрых прояснений фиолетового слоя. Более обоснованной казалась точка зрения С. Гесса, объяснявшего эти прояснения испарением кристаллов СО2 при вероятных повышениях температуры. Правда, трудно было объяснить, почему оно происходит сразу на целом полушарии планеты.

Многие ученые продолжали отстаивать точку зрения о наличии в атмосфере Марса истинного поглощения света. Ирландский астроном (эстонец по национальности) Э. Эпик предложил двуслойную модель: нижний слой, обладающий истинным поглощением, создает непрозрачность в фиолетовых лучах, а верхний слой производит рассеяние света, создает посветление вблизи лимба и яркие облака. В качестве вещества, создающего поглощение, назывались углерод и его полимеры (С2, С3,..., Сn), недокись углерода (С3О2), двуокись азота (NО2) и некоторые другие. Но признаков этих веществ не удалось обнаружить спектроскопически.

В 1969 г. выяснилось, что на снимках американских космических аппаратов "Маринер-6" и "Маринер-7", полученных в синих лучах, никакой дымки не видно, и поверхность Марса видна не хуже, чем в красных лучах. Но фиолетовый слой, если он существует, должен был быть одинаково непрозрачным для приборов, находящихся на Земле и в космосе.

Сторонники гипотезы фиолетового слоя не сдавались. Э. Эпик, например, заявил, что все дело в недоразумении: синий фильтр "Маринеров" имел эффективную длину волны 469 ммк, на которой обычно явление синей дымки не наблюдается: оно становится заметным на более коротких длинах волн. В своей работе 1973 г. Эпик продолжал настаивать на истинном поглощении света атмосферой Марса, но приписал его частичкам пыли, поднимаемым и удерживаемым вертикальными токами в атмосфере. Их размеры, по Эпику, не превосходят одного микрона. Таким образом, речь идет не о "синей" или "фиолетовой", а скорее, о "красной" или даже "черной" дымке, так как ее альбедо (отражающая способность) в фиолетовых лучах крайне низкое (0,04)*.

* (Альбедо в астрономии называется отношение количества отраженного планетой света к количеству солнечного света, падающего на нее.)

В 1972 г. проблемой фиолетового слоя занялся американский астроном Д. Томпсон. Изучив всю имевшуюся литературу по этой проблеме (более 120 работ) и использовав фотографическую коллекцию Международного планетного патруля, Томпсон пришел к простому и неожиданному выводу. Никакого фиолетового слоя, поглощающего или рассеивающего, нет. Вид Марса в фиолетовых лучах - это его нормальный вид, без всякой дымки. Просто в этих лучах контрасты между морями и материками слишком малы и мы их не различаем. Более того, из наблюдений в ультрафиолетовых лучах выяснилось, что в этих лучах все выглядит "наоборот" - моря кажутся светлее материков. Эти явления объясняются исключительно цветовыми особенностями пород, слагающих марсианские моря и материки, и атмосфера тут не при чем.

А как же "синие просветления", которые Вокулер четверть века назад считал самым сильным доказательством существования фиолетового слоя? Томпсон и Бойс тщательно проанализировали все случаи их наблюдений и пришли к выводу, что и здесь все обстоит наоборот. Никакого "просветления" не происходит, но в районе материков происходит осаждение чего-то вроде инея или же над ними (по метеорологическим причинам) образуется слой светлой дымки. Независимо от американских астрономов почти к такому же выводу пришла В. В. Прокофьева (Крымская астрофизическая обсерватория), объяснившая "синие прояснения" подъемом пыли с поверхности планеты над материками. Мелкие частицы пыли надолго остаются в нижних слоях атмосферы и несколько повышают яркость материков в синей области спектра. Контрасты между морями и материками в синих и фиолетовых лучах возрастают, и нам кажется, что атмосфера планеты "просветлела".

Так неожиданно разрешилась загадка фиолетового слоя и "синих просветлений".

предыдущая главасодержаниеследующая глава



Рейтинг@Mail.ru Rambler's
Top100

© Елисеева Людмила Александровна, автор статей; Карнаух Лидия Александровна, подборка материалов, оцифровка; Злыгостева Надежда Анатольевна, дизайн; Злыгостев Алексей Сергеевич, разработка ПО 2001-2018
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://adeva.ru "Adeva.ru: Энциклопедия небесных тел"